Calculus: Comparison of the the Disk/Washer and the Shell Methods Sandra Peterson, Learning Lab

Prerequisite Material: It is assumed that the reader is familiar with the following:

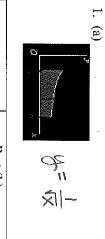
Method	Axis of Revolution	Formula	Notes about the Representative Rectangle		
Disk Method	x-axis	$V = \int_a^b [f(x)]^2 dx$	f(x) is the length dx is the width		
	y-axis	$V = \int_{c}^{d} [g(y)]^{2} dy$	g(y) is the length dy is the width		
Washer Method	x-axis	$V = \pi \int_{a}^{b} ([f(x)]^{2} - [g(x)]^{2}) dx$	f(x) is the top curve $g(x)$ is the bottom curve dx is the width		
	y-axis	$V = \pi \int_{c}^{d} \left([f(y)]^{2} - [g(y)]^{2} \right) dy$	f(y) is the right curve $g(y)$ is the left curve dy is the width		
Shell Method	x-axis	$V = 2\pi \int_{c}^{d} y[g(y)]dy$	y is the distance to the axis of revolution $g(y)$ is the length dy is the width		
	y-axis	$V = 2\pi \int_{a}^{b} x [f(x)] dx$	x is the distance to the axis of revolution $f(x)$ is the length dx is the width		

It is important to note that the representative rectangle in the Disk and the Washer Methods are always going to be *perpendicular* to the axis of revolution. With the Shell Method, the representative rectangle will always be *parallel* to the axis of revolution.

Another thing that might help while trying to visualize this type of volume problem, is that the Disk Method is used when the representative rectangle produces a solid that is similar to a plate (no hole in the middle). The Washer Method is used when the rectangle sweeps out a solid that is similar to a CD (hole in the middle). And finally, the Shell Method is used when the rectangle sweeps out a solid that is similar to a toilet paper tube.

Think about this: Can you see that the Disk Method is just a specific case of the Washer Method?

Created by Sandra Peterson



Circle (Solid of Revolution)	Semicircle	Isosceles Right Triangle #2	Isosceles Right Triangle #1	Equilateral Triangle	Square	Solid	
		*				ratt(0) Representative Cross Section	Dart (h)
πr^2	$\frac{1}{2} \pi r^2$	$\frac{1}{2} \ell^2$ where $\ell =$ length of leg of the right triangle	$\frac{1}{2} \ell^2$ where $\ell =$ length of leg of the right triangle	$\frac{s^2\sqrt{3}}{4}$. s ₂	Fait (C) General Formula for Area	Dart (a)
$\pi \left(\frac{1}{\sqrt{x}}\right)^2$	$\frac{\pi}{2} \left(\frac{1}{2\sqrt{x}} \right)^2$	$\frac{1}{2} \left(\frac{1}{\sqrt{x}} \right)^2$	$\frac{1}{2} \left(\frac{1}{\sqrt{2x}} \right)^2$	$\frac{\sqrt{3}}{4} \left(\frac{1}{\sqrt{x}}\right)^2$	$\left(\frac{1}{\sqrt{x}}\right)^2$	Expression for Area of Cross Section	Dart (d)
$\pi \int_{4}^{9} \left(\frac{1}{\sqrt{x}}\right)^{2} dx$	$\frac{\pi}{8} \int_{4}^{9} \left(\frac{1}{\sqrt{x}}\right)^{2} dx$	$\frac{1}{2}\int_{4}^{9} \left(\frac{1}{\sqrt{x}}\right)^{2} dx$	$\frac{1}{4} \int_4^9 \left(\frac{1}{\sqrt{x}}\right)^2 dx$	$\frac{\sqrt{3}}{4} \int_4^9 \left(\frac{1}{\sqrt{x}}\right)^2 dx$	$\int_{4}^{9} \left(\frac{1}{\sqrt{x}}\right)^{2} dx$	ran(e) Integral for Volume	Dart (a)
2.548 or $\pi \ln \left(\frac{9}{4}\right)$	$0.318 \text{ or } \frac{\pi}{8} \ln \left(\frac{9}{4} \right)$	$0.405 \text{ or } \frac{1}{2} \ln \left(\frac{9}{4} \right)$	$0.203 \text{ or } \frac{1}{4} \ln \left(\frac{9}{4} \right)$	0.351 or $\frac{\sqrt{3}}{4} \ln \left(\frac{9}{4} \right)$	$0.811 \text{ or } \ln\left(\frac{9}{4}\right)$	rat (g) Volume	Dart (a)